Graph Convolutional Networks with Markov Random Field Reasoning for Social Spammer Detection

Author:

Wu Yongji,Lian Defu,Xu Yiheng,Wu Le,Chen Enhong

Abstract

The recent growth of social networking platforms also led to the emergence of social spammers, who overwhelm legitimate users with unwanted content. The existing social spammer detection methods can be characterized into two categories: features based ones and propagation-based ones. Features based methods mainly rely on matrix factorization using tweet text features, and regularization using social graphs is incorporated. However, these methods are fully supervised and can only utilize labeled part of social graphs, which fail to work in a real-world semi-supervised setting. The propagation-based methods primarily employ Markov Random Fields (MRFs) to capture human intuitions in user following relations, which cannot take advantages of rich text features. In this paper, we propose a novel social spammer detection model based on Graph Convolutional Networks (GCNs) that operate on directed social graphs by explicitly considering three types of neighbors. Furthermore, inspired by the propagation-based methods, we propose a MRF layer with refining effects to encapsulate these human insights in social relations, which can be formulated as a RNN through mean-field approximate inference, and stack on top of GCN layers to enable end-to-end training. We evaluate our proposed method on two real-world social network datasets, and the results demonstrate that our method outperforms the state-of-the-art approaches.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GNN-based reverse design for mechanical systems: Bridging trajectory and mechanical design;Expert Systems with Applications;2024-08

2. Anime Link Prediction Using Improved Graph Convolutional Networks;Lecture Notes in Networks and Systems;2024

3. Semantic-aware entity alignment for low resource language knowledge graph;Frontiers of Computer Science;2023-12-18

4. DGC: Training Dynamic Graphs with Spatio-Temporal Non-Uniformity using Graph Partitioning by Chunks;Proceedings of the ACM on Management of Data;2023-12-08

5. Barad-dur: Near-Storage Accelerator for Training Large Graph Neural Networks;2023 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT);2023-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3