DGC: Training Dynamic Graphs with Spatio-Temporal Non-Uniformity using Graph Partitioning by Chunks

Author:

Chen Fahao1ORCID,Li Peng1ORCID,Wu Celimuge2ORCID

Affiliation:

1. The University of Aizu, Fukushima, Japan

2. University of Electro-Communications, Tokyo, Japan

Abstract

Dynamic Graph Neural Network (DGNN) has shown a strong capability of learning dynamic graphs by exploiting both spatial and temporal features. Although DGNN has recently received considerable attention by AI community and various DGNN models have been proposed, building a distributed system for efficient DGNN training is still challenging. It has been well recognized that how to partition the dynamic graph and assign workloads to multiple GPUs plays a critical role in training acceleration. Existing works partition a dynamic graph into snapshots or temporal sequences, which only work well when the graph has uniform spatio-temporal structures. However, dynamic graphs in practice are not uniformly structured, with some snapshots being very dense while others are sparse. To address this issue, we propose DGC, a distributed DGNN training system that achieves a 1.25× - 7.52× speedup over the state-of-the-art in our testbed. DGC's success stems from a new graph partitioning method that partitions dynamic graphs into chunks, which are essentially subgraphs with modest training workloads and few inter connections. This partitioning algorithm is based on graph coarsening, which can run very fast on large graphs. In addition, DGC has a highly efficient run-time, powered by the proposed chunk fusion and adaptive stale aggregation techniques. Extensive experimental results on 3 typical DGNN models and 4 popular dynamic graph datasets are presented to show the effectiveness of DGC.

Funder

Japan Society for the Promotion of Science (JSPS) KAKENHI

Grant-in-Aid for JSPS Fellows

Japan Science and Technology Agency (JST) PRESTO

Publisher

Association for Computing Machinery (ACM)

Reference70 articles.

1. Binary Graph Neural Networks

2. Gecia Bravo Hermsdorff and Lee Gunderson . 2019 . A unifying framework for spectrum-preserving graph sparsification and coarsening . Advances in Neural Information Processing Systems , Vol. 32 (2019). Gecia Bravo Hermsdorff and Lee Gunderson. 2019. A unifying framework for spectrum-preserving graph sparsification and coarsening. Advances in Neural Information Processing Systems, Vol. 32 (2019).

3. DGCL

4. Efficient scaling of dynamic graph neural networks

5. FedGraph: Federated Graph Learning With Intelligent Sampling

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Scheduling for Multi-Job Federated Learning Systems with Client Sharing;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3