One SPRING to Rule Them Both: Symmetric AMR Semantic Parsing and Generation without a Complex Pipeline

Author:

Bevilacqua Michele,Blloshmi Rexhina,Navigli Roberto

Abstract

In Text-to-AMR parsing, current state-of-the-art semantic parsers use cumbersome pipelines integrating several different modules or components, and exploit graph recategorization, i.e., a set of content-specific heuristics that are developed on the basis of the training set. However, the generalizability of graph recategorization in an out-of-distribution setting is unclear. In contrast, state-of-the-art AMR-to-Text generation, which can be seen as the inverse to parsing, is based on simpler seq2seq. In this paper, we cast Text-to-AMR and AMR-to-Text as a symmetric transduction task and show that by devising a careful graph linearization and extending a pretrained encoder-decoder model, it is possible to obtain state-of-the-art performances in both tasks using the very same seq2seq approach, i.e., SPRING (Symmetric PaRsIng aNd Generation). Our model does not require complex pipelines, nor heuristics built on heavy assumptions. In fact, we drop the need for graph recategorization, showing that this technique is actually harmful outside of the standard benchmark. Finally, we outperform the previous state of the art on the English AMR 2.0 dataset by a large margin: on Text-to-AMR we obtain an improvement of 3.6 Smatch points, while on AMR-to-Text we outperform the state of the art by 11.2 BLEU points. We release the software at github.com/SapienzaNLP/spring.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploration and comparison of diverse approaches for integrating syntactic knowledge into AMR parsing;Applied Intelligence;2023-11-25

2. Addressing Long-Distance Dependencies in AMR Parsing with Hierarchical Clause Annotation;Electronics;2023-09-16

3. Biases in Large Language Models: Origins, Inventory, and Discussion;Journal of Data and Information Quality;2023-06-22

4. A Comparative Analysis of Automatic Speech Recognition Errors in Small Group Classroom Discourse;Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization;2023-06-18

5. Integrating Syntactic and Semantic Knowledge in AMR Parsing with Heterogeneous Graph Attention Network;ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2023-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3