Graph4IUR: Incomplete Utterance Rewriting with Semantic Graph

Author:

Gao Zipeng1,Wang Jinke1,Xu Tong1,Wang Zhefeng2,Yang Yu3,Su Jia2,Chen Enhong1

Affiliation:

1. School of Computer Science and Technology, University of Science and Technology of China, Hefei, China

2. Huawei Cloud Computing Technologies Co., Ltd., Hangzhou, China

3. City University of Hong Kong, Hong Kong, China

Abstract

Utterance rewriting aims to identify and supply the omitted information in human conversation, which further enables the downstream task to understand conversations more comprehensively. Recently, sequence edit methods, which leverage the overlap between two sentences, have been widely applied to narrow the search space confronted by the previous linear generation methods. However, these methods ignore the relationship between linguistic elements in the conversation, which reflects how the knowledge and thoughts are organized in human communication. In this case, although most of the content in rewritten sentences can be found in the context, we found that some connecting words expressing relationships are often missing, which results in the out-of-context problem for the previous sentence edit method. To that end, in this paper, we propose a new semantic Graph-based Incomplete Utterance Rewriting (Graph4IUR) framework, which takes the semantic graph to depict the relationship between linguistic elements and captures out-of-context words. Specifically, we adopt the Abstract Meaning Representation (AMR) [4] graph as the basic sentence-to-graph method to depict the dialogue from the graph perspective, which could well represent the high-level semantics relationships of sentences. Along this line, we further adapt the sentence editing models to rewrite without changing the sentence architecture, which brings a restriction to exploring the overlap part of the current and rewritten sentences in the IUR task. Extensive experimental results indicate that our Graph4IUR framework can effectively alleviate the out-of-context problem and improve the performance of the previous edit-based methods in the IUR task.

Publisher

Association for Computing Machinery (ACM)

Reference62 articles.

1. Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. 2013. Abstract Meaning Representation for Sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse. Association for Computational Linguistics, Sofia, Bulgaria, 178–186. https://aclanthology.org/W13-2322

2. Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. 2013. Abstract Meaning Representation for Sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse. Association for Computational Linguistics, Sofia, Bulgaria, 178–186. https://aclanthology.org/W13-2322

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3