EIGP: document-level event argument extraction with information enhancement generated based on prompts

Author:

Liu Kai,Zhao Hui,Wang Zicong,Hou Qianxi

Funder

Jilin Provincial Science and Technology Development Plan Project Fund

Publisher

Springer Science and Business Media LLC

Reference39 articles.

1. Lu Y, Lin H, Xu J, et al (2021) Text2Event: controllable sequence-to-structure generation for end-to-end event extraction. In: Zong C, Xia F, Li W, et al (eds) Proceedings of the 59th annual meeting of the association for computational linguistics and the 11th international joint conference on natural language processing (vol 1: Long Papers). Association for Computational Linguistics, Online, pp 2795–2806, https://doi.org/10.18653/v1/2021.acl-long.217, https://aclanthology.org/2021.acl-long.217

2. Li S, Ji H, Han J (2021) Document-level event argument extraction by conditional generation. In: Toutanova K, Rumshisky A, Zettlemoyer L, et al (eds) Proceedings of the 2021 conference of the North American chapter of the association for computational linguistics: human language technologies. Association for Computational Linguistics, Online, pp 894–908. https://doi.org/10.18653/v1/2021.naacl-main.69, https://aclanthology.org/2021.naacl-main.69

3. Hsu IH, Huang KH, Boschee E, et al (2022) DEGREE: a data-efficient generation-based event extraction model. In: Carpuat M, de Marneffe MC, Meza Ruiz IV (eds) Proceedings of the 2022 conference of the North American Chapter of the Association for computational linguistics: human language technologies. Association for Computational Linguistics, Seattle, United States, pp 1890–190. https://doi.org/10.18653/v1/2022.naacl-main.138, https://aclanthology.org/2022.naacl-main.138

4. Liu X, Huang H, Shi G, et al (2022) Dynamic prefix-tuning for generative template-based event extraction. In: Muresan S, Nakov P, Villavicencio A (eds) Proceedings of the 60th annual meeting of the association for computational linguistics (vol 1: Long Papers). Association for Computational Linguistics, Dublin, Ireland, pp 5216–5228. https://doi.org/10.18653/v1/2022.acl-long.358, https://aclanthology.org/2022.acl-long.358

5. Hsu IH, Xie Z, Huang KH, et al (2023) AMPERE: AMR-aware prefix for generation-based event argument extraction model. In: Rogers A, Boyd-Graber J, Okazaki N (eds) Proceedings of the 61st annual meeting of the association for computational linguistics (vol 1: Long Papers). Association for Computational Linguistics, Toronto, Canada, pp 10976–10993. https://doi.org/10.18653/v1/2023.acl-long.615, https://aclanthology.org/2023.acl-long.615

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3