Complementary Attention Gated Network for Pedestrian Trajectory Prediction

Author:

Duan Jinghai,Wang Le,Long Chengjiang,Zhou Sanping,Zheng Fang,Shi Liushuai,Hua Gang

Abstract

Pedestrian trajectory prediction is crucial in many practical applications due to the diversity of pedestrian movements, such as social interactions and individual motion behaviors. With similar observable trajectories and social environments, different pedestrians may make completely different future decisions. However, most existing methods only focus on the frequent modal of the trajectory and thus are difficult to generalize to the peculiar scenario, which leads to the decline of the multimodal fitting ability when facing similar scenarios. In this paper, we propose a complementary attention gated network (CAGN) for pedestrian trajectory prediction, in which a dual-path architecture including normal and inverse attention is proposed to capture both frequent and peculiar modals in spatial and temporal patterns, respectively. Specifically, a complementary block is proposed to guide normal and inverse attention, which are then be summed with learnable weights to get attention features by a gated network. Finally, multiple trajectory distributions are estimated based on the fused spatio-temporal attention features due to the multimodality of future trajectory. Experimental results on benchmark datasets, i.e., the ETH, and the UCY, demonstrate that our method outperforms state-of-the-art methods by 13.8% in Average Displacement Error (ADE) and 10.4% in Final Displacement Error (FDE). Code will be available at https://github.com/jinghaiD/CAGN

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3