A Robotic Execution Framework for Online Probabilistic (Re)Planning

Author:

Chanel Caroline,Lesire Charles,Teichteil-Königsbuch Florent

Abstract

Due to the high complexity of probabilistic planning algorithms, roboticists often opt for deterministic replanning paradigms, which can quickly adapt the current plan to the environment's changes. However, probabilistic planning suffers in practice from the common misconception that it is needed to generate complete or closed policies, which would not require to be adapted on-line. In this work, we propose an intermediate approach, which generates incomplete partial policies taking into account mid-term probabilistic uncertainties, continually improving them on a gliding horizon or regenerating them when they fail. Our algorithm is a configurable anytime meta-planner that drives any sub-(PO)MDP standard planner, dealing with all pending and time-bounded planning requests sent by the execution framework from many reachable possible future execution states, in anticipation of the probabilistic evolution of the system. We assess our approach on generic robotic problems and on combinatorial UAVs (PO)MDP missions, which we tested during real flights: emergency landing with discrete and continuous state variables, and target detection and recognition in unknown environments.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3