Simulating Operational Concepts for Autonomous Robotic Space Exploration Systems: A Framework for Early Design Validation

Author:

Rimani Jasmine1ORCID,Viola Nicole1ORCID,Lizy-Destrez Stéphanie2ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

2. Department of Aerospace Vehicles Design and Control, ISAE-SUPAERO, 10 Av. Edouard Belin, 31400 Toulouse, France

Abstract

During mission design, the concept of operations (ConOps) describes how the system operates during various life cycle phases to meet stakeholder expectations. ConOps is sometimes declined in a simple evaluation of the power consumption or data generation per mode. Different operational timelines are typically developed based on expert knowledge. This approach is robust when designing an automated system or a system with a low level of autonomy. However, when studying highly autonomous systems, designers may be interested in understanding how the system would react in an operational scenario when provided with knowledge about its actions and operational environment. These considerations can help verify and validate the proposed ConOps architecture, highlight shortcomings in both physical and functional design, and help better formulate detailed requirements. Hence, this study aims to provide a framework for the simulation and validation of operational scenarios for autonomous robotic space exploration systems during the preliminary design phases. This study extends current efforts in autonomy technology for planetary systems by focusing on testing their operability and assessing their performances in different scenarios early in the design process. The framework uses Model-Based Systems Engineering (MBSE) as the knowledge base for the studied system and its operations. It then leverages a Markov Decision Process (MDP) to simulate a set of system operations in a relevant scenario. It then outputs a feasible plan with the associated variation of a set of considered resources as step functions. This method was applied to simulate the operations of a small rover exploring an unknown environment to observe and sample a set of targets.

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3