Planning with Critical Section Macros: Theory and Practice

Author:

Chrpa Lukas,Vallati Mauro

Abstract

Macro-operators (macros) are a well-known technique for enhancing performance of planning engines by providing “short-cuts” in the state space. Existing macro learning systems usually generate macros by considering most frequent action sequences in training plans. Unfortunately, frequent action sequences might not capture meaningful activities as a whole, leading to a limited beneficial impact for the planning process. In this paper, inspired by resource locking in critical sections in parallel computing, we propose a technique that generates macros able to capture whole activities in which limited resources (e.g., a robotic hand, or a truck) are used. Specifically, such a Critical Section macro starts by locking the resource (e.g., grabbing an object), continues by using the resource (e.g., manipulating the object) and finishes by releasing the resource (e.g., dropping the object). Hence, such a macro bridges states in which the resource is locked and cannot be used. We also introduce versions of Critical Section macros dealing with multiple resources and phased locks. Usefulness of macros is evaluated using a range of state-of-the-art planners, and a large number of benchmarks from the deterministic and learning tracks of recent editions of the International Planning Competition.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3