Interactive Policy Learning through Confidence-Based Autonomy

Author:

Chernova S.,Veloso M.

Abstract

We present Confidence-Based Autonomy (CBA), an interactive algorithm for policy learning from demonstration. The CBA algorithm consists of two components which take advantage of the complimentary abilities of humans and computer agents. The first component, Confident Execution, enables the agent to identify states in which demonstration is required, to request a demonstration from the human teacher and to learn a policy based on the acquired data. The algorithm selects demonstrations based on a measure of action selection confidence, and our results show that using Confident Execution the agent requires fewer demonstrations to learn the policy than when demonstrations are selected by a human teacher. The second algorithmic component, Corrective Demonstration, enables the teacher to correct any mistakes made by the agent through additional demonstrations in order to improve the policy and future task performance. CBA and its individual components are compared and evaluated in a complex simulated driving domain. The complete CBA algorithm results in the best overall learning performance, successfully reproducing the behavior of the teacher while balancing the tradeoff between number of demonstrations and number of incorrect actions during learning.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Challenges, evaluation and opportunities for open-world learning;Nature Machine Intelligence;2024-06-24

2. Hybrid knowledge transfer for MARL based on action advising and experience sharing;Frontiers in Neurorobotics;2024-05-07

3. Automated design of action advising trigger conditions for multiagent reinforcement learning: A genetic programming-based approach;Swarm and Evolutionary Computation;2024-03

4. Generalizing to New Tasks via One-Shot Compositional Subgoals;2024 10th International Conference on Automation, Robotics and Applications (ICARA);2024-02-22

5. Deep Reinforcement Learning for Mobile Robots: Overview and Issues;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3