1. Heaven, D. et al. Why deep-learning AIs are so easy to fool. Nature 574, 163–166 (2019).
2. Marcus, G. Deep learning: a critical appraisal. Preprint at https://arxiv.org/abs/1801.00631 (2018).
3. Moon, J., Kim, J., Shin, Y. & Hwang, S. Confidence-aware learning for deep neural networks. In Proc. 37th International Conference on Machine Learning (eds Daumé, H. & Singh, A.) 7034–7044 (PMLR, 2020).
4. Bulusu, S., Kailkhura, B., Li, B., Varshney, P. K. & Song, D. Anomalous example detection in deep learning: a survey. IEEE Access 8, 132330–132347 (2020).
5. Musliner, D. J. et al. OpenMIND: planning and adapting in domains with novelty. In Proc. Ninth Annual Conference on Advances in Cognitive Systems (Advances in Cognitive Systems, 2021).