The Automatic Inference of State Invariants in TIM

Author:

Fox M.,Long D.

Abstract

As planning is applied to larger and richer domains the effort involved in constructing domain descriptions increases and becomes a significant burden on the human application designer. If general planners are to be applied successfully to large and complex domains it is necessary to provide the domain designer with some assistance in building correctly encoded domains. One way of doing this is to provide domain-independent techniques for extracting, from a domain description, knowledge that is implicit in that description and that can assist domain designers in debugging domain descriptions. This knowledge can also be exploited to improve the performance of planners: several researchers have explored the potential of state invariants in speeding up the performance of domain-independent planners. In this paper we describe a process by which state invariants can be extracted from the automatically inferred type structure of a domain. These techniques are being developed for exploitation by STAN, a Graphplan based planner that employs state analysis techniques to enhance its performance.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized planning as heuristic search: A new planning search-space that leverages pointers over objects;Artificial Intelligence;2024-05

2. Reformulation techniques for automated planning: a systematic review;The Knowledge Engineering Review;2023

3. Hybrid Discrete-Continuous Path Planning for Lattice Traversal;2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2022-10-23

4. Automated narrative planning model extension;Autonomous Agents and Multi-Agent Systems;2021-05-07

5. An Introduction to the Planning Domain Definition Language (PDDL): Book review;Artificial Intelligence;2020-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3