CFD-BASED SIMULATION AND MODEL VERIFICATION OF PEACHES FORCED AIR COOLING ON DIFFERENT AIR SUPPLY TEMPERATURES

Author:

Yingmin Chen1,Haiyan Song1,Rui Zhao1,Qin Su1

Affiliation:

1. Shanxi Agricultural University

Abstract

To ensure optimum peach quality during precooling, air supply temperature within the precooled facility should be precisely controlled. Three-dimensional unsteady computational fluid dynamics (CFD) model was established in this research, taking air supply temperature as an influencing factor, a dynamic simulation of this model was performed based on Fluent, and its reliability was verified through experiments. Simulation results showed that the decrease of air supply temperature did not affect the 7/8ths cooling time (SECT) significantly, but shortened the cooling time of the fruit which was cooled from the initial temperature to a fixed temperature, especially when air supply temperature dropped below 4oC, its corresponding cooling time showed a trend of steady variation. Meanwhile, respiration rate of 6-8 oC was about twice as high as that of 2-4 oC, its corresponding moisture loss was also increased by 34.71-39.74%. Thus, the range of 2-4 oC was more suitable for quick precooling peaches after harvest. Experiments showed that the root mean square error (RMSE) of 0.7 and 2.7 m·s-1 were 0.747 and 0.836 oC, respectively. It could be seen that simulation results were in good agreement with experimental results, which fully verified the feasibility and high accuracy of this new modeling method. Finally, this study can provide a reliable reference for establishing an accurate precooling numerical model, and rationally optimizing air supply temperature range of fruits precooling experiment to maintain its high quality.

Publisher

R and D National Institute for Agricultural and Food Industry Machinery - INMA Bucharest

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3