Distributed Kerr Lens Mode-Locked Yb:YAG Thin-Disk Oscillator

Author:

Zhang Jinwei123ORCID,Pӧtzlberger Markus4,Wang Qing5,Brons Jonathan2,Seidel Marcus2ORCID,Bauer Dominik6,Sutter Dirk6,Pervak Vladimir4,Apolonski Alexander24ORCID,Mak Ka Fai2,Kalashnikov Vladimir7,Wei Zhiyi3,Krausz Ferenc24,Pronin Oleg28

Affiliation:

1. School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074 Wuhan, China

2. Max-Planck Institute of Quantum Optics, Hans-Kopfermann-Str. 1, 85748 GarchingGermany

3. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China

4. Ludwig Maximilian University of Munich, Am Coulombwall 1, 85748 Garching, Germany

5. School of Optics and Photonics, Beijing Institute of Technology, 100081 Beijing, China

6. TRUMPF Laser GmbH, Aichhalder Straße 39, D-78713 SchrambergGermany

7. Institut für Photonik, TU Wien, A-1040 Vienna, Austria

8. Helmut-Schmidt-Universität/Universität der Bundeswehr, 22043 HamburgGermany

Abstract

Ultrafast laser oscillators are indispensable tools for diverse applications in scientific research and industry. When the phases of the longitudinal laser cavity modes are locked, pulses as short as a few femtoseconds can be generated. As most high-power oscillators are based on narrow-bandwidth materials, the achievable duration for high-power output is usually limited. Here, we present a distributed Kerr lens mode-locked Yb:YAG thin-disk oscillator which generates sub-50 fs pulses with spectral widths far broader than the emission bandwidth of the gain medium at full width at half maximum. Simulations were also carried out, indicating good qualitative agreement with the experimental results. Our proof-of-concept study shows that this new mode-locking technique is pulse energy and average power scalable and applicable to other types of gain media, which may lead to new records in the generation of ultrashort pulses.

Funder

National Natural Science Foundation of China

Munich Centre for Advanced Photonics

Publisher

American Association for the Advancement of Science (AAAS)

Reference40 articles.

1. Attosecond physics

2. Femtosecond laser micromachining in transparent materials;Gattass R. R.;Nature Photonics,2008

3. THz-enhanced DC ultrafast electron diffractometer;Zhang D.;Ultrafast Science,2021

4. A custom-tailored multi-TW optical electric field for gigawatt soft-x-ray isolated attosecond pulses;Xue B.;Ultrafast Science,2021

5. Self mode-locking of lasers with saturable absorbers;DeMaria A.;Applied Physics Letters,1966

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3