Phenotypic Analysis of Diseased Plant Leaves Using Supervised and Weakly Supervised Deep Learning

Author:

Zhou Lei1,Xiao Qinlin2,Taha Mohanmed Farag23,Xu Chengjia2,Zhang Chu4

Affiliation:

1. College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China.

2. College of Biosystems Engineering and Food Science, Zhejiang University, Zhejiang, China.

3. Department of Soil and Water Sciences, Faculty of Environmental Agricultural Sciences, Arish University, North Sinai 45516, Egypt.

4. School of Information Engineering, Huzhou University, Huzhou, China.

Abstract

Deep learning and computer vision have become emerging tools for diseased plant phenotyping. Most previous studies focused on image-level disease classification. In this paper, pixel-level phenotypic feature (the distribution of spot) was analyzed by deep learning. Primarily, a diseased leaf dataset was collected and the corresponding pixel-level annotation was contributed. A dataset of apple leaves samples was used for training and optimization. Another set of grape and strawberry leaf samples was used as an extra testing dataset. Then, supervised convolutional neural networks were adopted for semantic segmentation. Moreover, the possibility of weakly supervised models for disease spot segmentation was also explored. Grad-CAM combined with ResNet-50 (ResNet-CAM), and that combined with a few-shot pretrained U-Net classifier for weakly supervised leaf spot segmentation (WSLSS), was designed. They were trained using image-level annotations (healthy versus diseased) to reduce the cost of annotation work. Results showed that the supervised DeepLab achieved the best performance (IoU = 0.829) on the apple leaf dataset. The weakly supervised WSLSS achieved an IoU of 0.434. When processing the extra testing dataset, WSLSS realized the best IoU of 0.511, which was even higher than fully supervised DeepLab (IoU = 0.458). Although there was a certain gap in IoU between the supervised models and weakly supervised ones, WSLSS showed stronger generalization ability than supervised models when processing the disease types not involved in the training procedure. Furthermore, the contributed dataset in this paper could help researchers get a quick start on designing their new segmentation methods in future studies.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3