Non-contrasted computed tomography (NCCT) based chronic thromboembolic pulmonary hypertension (CTEPH) automatic diagnosis using cascaded network with multiple instance learning

Author:

Zhao MayangORCID,Song Liming,Zhu Jiarui,Zhou Ta,Zhang Yuanpeng,Chen Shu-Cheng,Li Haojiang,Cao Di,Jiang Yi-Quan,Ho Waiyin,Cai Jing,Ge RenORCID

Abstract

Abstract Objective. The diagnosis of chronic thromboembolic pulmonary hypertension (CTEPH) is challenging due to nonspecific early symptoms, complex diagnostic processes, and small lesion sizes. This study aims to develop an automatic diagnosis method for CTEPH using non-contrasted computed tomography (NCCT) scans, enabling automated diagnosis without precise lesion annotation. Approach. A novel cascade network (CN) with multiple instance learning (CNMIL) framework was developed to improve the diagnosis of CTEPH. This method uses a CN architecture combining two Resnet-18 CNN networks to progressively distinguish between normal and CTEPH cases. Multiple instance learning (MIL) is employed to treat each 3D CT case as a ‘bag’ of image slices, using attention scoring to identify the most important slices. An attention module helps the model focus on diagnostically relevant regions within each slice. The dataset comprised NCCT scans from 300 subjects, including 117 males and 183 females, with an average age of 52.5 ± 20.9 years, consisting of 132 normal cases and 168 cases of lung diseases, including 88 cases of CTEPH. The CNMIL framework was evaluated using sensitivity, specificity, and the area under the curve (AUC) metrics, and compared with common 3D supervised classification networks and existing CTEPH automatic diagnosis networks. Main results. The CNMIL framework demonstrated high diagnostic performance, achieving an AUC of 0.807, accuracy of 0.833, sensitivity of 0.795, and specificity of 0.849 in distinguishing CTEPH cases. Ablation studies revealed that integrating MIL and the CN significantly enhanced performance, with the model achieving an AUC of 0.978 and perfect sensitivity (1.000) in normal classification. Comparisons with other 3D network architectures confirmed that the integrated model outperformed others, achieving the highest AUC of 0.8419. Significance. The CNMIL network requires no additional scans or annotations, relying solely on NCCT. This approach can improve timely and accurate CTEPH detection, resulting in better patient outcomes.

Funder

Health and Medical Research Fund

General Research Fund of University Research Committee

PolyU (UGC) RI-IWEAR Seed Project

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3