Comparing 3D, 2.5D, and 2D Approaches to Brain Image Auto-Segmentation

Author:

Avesta Arman123,Hossain Sajid23,Lin MingDe14ORCID,Aboian Mariam1ORCID,Krumholz Harlan M.35,Aneja Sanjay236ORCID

Affiliation:

1. Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA

2. Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA

3. Center for Outcomes Research and Evaluation, Yale School of Medicine, New Haven, CT 06510, USA

4. Visage Imaging, Inc., San Diego, CA 92130, USA

5. Division of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06510, USA

6. Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA

Abstract

Deep-learning methods for auto-segmenting brain images either segment one slice of the image (2D), five consecutive slices of the image (2.5D), or an entire volume of the image (3D). Whether one approach is superior for auto-segmenting brain images is not known. We compared these three approaches (3D, 2.5D, and 2D) across three auto-segmentation models (capsule networks, UNets, and nnUNets) to segment brain structures. We used 3430 brain MRIs, acquired in a multi-institutional study, to train and test our models. We used the following performance metrics: segmentation accuracy, performance with limited training data, required computational memory, and computational speed during training and deployment. The 3D, 2.5D, and 2D approaches respectively gave the highest to lowest Dice scores across all models. 3D models maintained higher Dice scores when the training set size was decreased from 3199 MRIs down to 60 MRIs. 3D models converged 20% to 40% faster during training and were 30% to 50% faster during deployment. However, 3D models require 20 times more computational memory compared to 2.5D or 2D models. This study showed that 3D models are more accurate, maintain better performance with limited training data, and are faster to train and deploy. However, 3D models require more computational memory compared to 2.5D or 2D models.

Funder

National Center for Advancing Translational Science

Radiological Society of North America’s

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3