Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data

Author:

Bousabarah Khaled,Ruge Maximilian,Brand Julia-Sarita,Hoevels Mauritius,Rueß Daniel,Borggrefe Jan,Große Hokamp Nils,Visser-Vandewalle Veerle,Maintz David,Treuer Harald,Kocher Martin

Abstract

Abstract Introduction Deep learning-based algorithms have demonstrated enormous performance in segmentation of medical images. We collected a dataset of multiparametric MRI and contour data acquired for use in radiosurgery, to evaluate the performance of deep convolutional neural networks (DCNN) in automatic segmentation of brain metastases (BM). Methods A conventional U-Net (cU-Net), a modified U-Net (moU-Net) and a U-Net trained only on BM smaller than 0.4 ml (sU-Net) were implemented. Performance was assessed on a separate test set employing sensitivity, specificity, average false positive rate (AFPR), the dice similarity coefficient (DSC), Bland-Altman analysis and the concordance correlation coefficient (CCC). Results A dataset of 509 patients (1223 BM) was split into a training set (469 pts) and a test set (40 pts). A combination of all trained networks was the most sensitive (0.82) while maintaining a specificity 0.83. The same model achieved a sensitivity of 0.97 and a specificity of 0.94 when considering only lesions larger than 0.06 ml (75% of all lesions). Type of primary cancer had no significant influence on the mean DSC per lesion (p = 0.60). Agreement between manually and automatically assessed tumor volumes as quantified by a CCC of 0.87 (95% CI, 0.77–0.93), was excellent. Conclusion Using a dataset which properly captured the variation in imaging appearance observed in clinical practice, we were able to conclude that DCNNs reach clinically relevant performance for most lesions. Clinical applicability is currently limited by the size of the target lesion. Further studies should address if small targets are accurately represented in the test data.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3