Affiliation:
1. Physiology and Biochemistry of Plants, Faculty of Biology, University of Bielefeld, 33501 Bielefeld, Germany
Abstract
Abstract
Salicylic acid (SA) plays a key role in plant disease resistance and hypersensitive cell death but is also implicated in hardening responses to abiotic stressors. Cadmium (Cd) exposure increased the free SA contents of barley (Hordeum vulgare) roots by a factor of about 2. Cultivation of dry barley caryopses presoaked in SA-containing solution for only 6 h or single transient addition of SA at a 0.5 mmconcentration to the hydroponics solution partially protected the seedlings from Cd toxicity during the following growth period. Both SA treatments had little effect on growth in the absence of Cd, but increased root and shoot length and fresh and dry weight and inhibited lipid peroxidation in roots, as indicated by malondialdehyde contents, in the presence of Cd. To test whether this protection was due to up-regulation of antioxidant enzymes, activities and transcript levels of the H2O2-metabolizing enzymes such as catalase and ascorbate peroxidase were measured in control and SA-treated seedlings in the presence or absence of 25 μmCd. Cd stress increased the activity of these enzymes by variable extent. SA treatments strongly or completely suppressed the Cd-induced up-regulation of the antioxidant enzyme activities. Slices from leaves treated with SA for 24 h also showed an increased level of tolerance toward high Cd concentrations as indicated by chlorophyll a fluorescence parameters. The results support the conclusion that SA alleviates Cd toxicity not at the level of antioxidant defense but by affecting other mechanisms of Cd detoxification.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
518 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献