Evidence for a Role of Salicylic Acid in the Oxidative Damage Generated by NaCl and Osmotic Stress in Arabidopsis Seedlings

Author:

Borsani Omar1,Valpuesta Victoriano1,Botella Miguel A.1

Affiliation:

1. Departamento de Biologı́a Molecular y Bioquı́mica, Universidad de Málaga, 29071 Málaga, Spain

Abstract

Abstract Previous studies have shown that salicylic acid (SA) is an essential component of the plant resistance to pathogens. We now show that SA plays a role in the plant response to adverse environmental conditions, such as salt and osmotic stresses. We have studied the responses of wild-type Arabidopsis and an SA-deficient transgenic line expressing a salicylate hydroxylase (NahG) gene to different abiotic stress conditions. Wild-type plants germinated under moderate light conditions in media supplemented with 100 mmNaCl or 270 mm mannitol showed extensive necrosis in the shoot. In contrast, NahG plants germinated under the same conditions remained green and developed true leaves. The lack of necrosis observed in NahG seedlings under the same conditions suggests that SA potentiates the generation of reactive oxygen species in photosynthetic tissues during salt and osmotic stresses. This hypothesis is supported by the following observations. First, the herbicide methyl viologen, a generator of superoxide radical during photosynthesis, produced a necrotic phenotype only in wild-type plants. Second, the presence of reactive oxygen-scavenging compounds in the germination media reversed the wild-type necrotic phenotype seen under salt and osmotic stress. Third, a greater increase in the oxidized state of the glutathione pool under NaCl stress was observed in wild-type seedlings compared with NahG seedlings. Fourth, greater oxidative damage occurred in wild-type seedlings compared with NahG seedlings under NaCl stress as measured by lipid peroxidation. Our data support a model for SA potentiating the stress response of the germinating Arabidopsis seedling.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3