Conserved Changes in the Dynamics of Metabolic Processes during Fruit Development and Ripening across Species

Author:

Klie Sebastian1,Osorio Sonia2,Tohge Takayuki1,Drincovich María F.3,Fait Aaron4,Giovannoni James J.5,Fernie Alisdair R.1,Nikoloski Zoran1

Affiliation:

1. Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany

2. Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain (S.O.)

3. Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina (M.F.D.)

4. French Associates Institute for Agriculture and Biotechnology of Dryland, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negrev, Sede Boquer 84990, Israel (A.F.); and

5. Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (J.J.G.)

Abstract

Abstract Computational analyses of molecular phenotypes traditionally aim at identifying biochemical components that exhibit differential expression under various scenarios (e.g. environmental and internal perturbations) in a single species. High-throughput metabolomics technologies allow the quantification of (relative) metabolite levels across developmental stages in different tissues, organs, and species. Novel methods for analyzing the resulting multiple data tables could reveal preserved dynamics of metabolic processes across species. The problem we address in this study is 2-fold. (1) We derive a single data table, referred to as a compromise, which captures information common to the investigated set of multiple tables containing data on different fruit development and ripening stages in three climacteric (i.e. peach [Prunus persica] and two tomato [Solanum lycopersicum] cultivars, Ailsa Craig and M82) and two nonclimacteric (i.e. strawberry [Fragaria × ananassa] and pepper [Capsicum chilense]) fruits; in addition, we demonstrate the power of the method to discern similarities and differences between multiple tables by analyzing publicly available metabolomics data from three tomato ripening mutants together with two tomato cultivars. (2) We identify the conserved dynamics of metabolic processes, reflected in the data profiles of the corresponding metabolites that contribute most to the determined compromise. Our analysis is based on an extension to principal component analysis, called STATIS, in combination with pathway overenrichment analysis. Based on publicly available metabolic profiles for the investigated species, we demonstrate that STATIS can be used to identify the metabolic processes whose behavior is similarly affected during fruit development and ripening. These findings ultimately provide insights into the pathways that are essential during fruit development and ripening across species.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference82 articles.

1. Gene expression analysis of strawberry achene and receptacle maturation using DNA microarrays;Aharoni;J Exp Bot,2002

2. Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry;Aharoni;OMICS,2002

3. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development;Alba;Plant Cell,2005

4. Controlling the false discovery rate: a practical and powerful approach to multiple testing;Benjamini;J R Stat Soc B,1995

5. Metabolism of malic and tartaric acids in grape berries;Beriashvili;Biochemistry (Moscow),1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3