Grain Number, Plant Height, and Heading Date7 Is a Central Regulator of Growth, Development, and Stress Response

Author:

Weng Xiaoyu1,Wang Lei1,Wang Jia1,Hu Yong1,Du Hao1,Xu Caiguo1,Xing Yongzhong1,Li Xianghua1,Xiao Jinghua1,Zhang Qifa1

Affiliation:

1. National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China

Abstract

Abstract Grain number, plant height, and heading date7 (Ghd7) has been regarded as an important regulator of heading date and yield potential in rice (Oryza sativa). In this study, we investigated functions of Ghd7 in rice growth, development, and environmental response. As a long-day dependent negative regulator of heading date, the degree of phenotypic effect of Ghd7 on heading date and yield traits is quantitatively related to the transcript level and is also influenced by both environmental conditions and genetic backgrounds. Ghd7 regulates yield traits through modulating panicle branching independent of heading date. Ghd7 also regulates plasticity of tiller branching by mediating the PHYTOCHROME B-TEOSINTE BRANCHED1 pathway. Drought, abscisic acid, jasmonic acid, and high-temperature stress strongly repressed Ghd7 expression, whereas low temperature enhanced Ghd7 expression. Overexpression of Ghd7 increased drought sensitivity, whereas knock-down of Ghd7 enhanced drought tolerance. Gene chip analysis of expression profiles revealed that Ghd7 was involved in the regulation of multiple processes, including flowering time, hormone metabolism, and biotic and abiotic stresses. This study suggests that Ghd7 functions to integrate the dynamic environmental inputs with phase transition, architecture regulation, and stress response to maximize the reproductive success of the rice plant.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 187 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3