Functional divergence of FTL9 and FTL10 in flowering control in rice

Author:

Tan Jingai,Muhammad Sajid,Zhang Lantian,He Haohua,Bian Jianmin

Abstract

Abstract Background Floral transition in cereals is a critical phenomenon influenced by exogenous and endogenous signals, determining crop yield and reproduction. Flowering Locus T-like (FT-like) genes encode a mobile florigen, the main signaling molecule for flowering. Results In this study, we characterized two FT-like genes, FTL9 and FTL10, to study their functional diversity in flowering control in rice. We compared independent mutant lines of ftl10 with WT and observed negligible differences in the flowering phenotype, or agronomic traits implying potentially redundant roles of FTL10 loss-of-function in flowering control in rice. Nevertheless, we found that overexpression of FTL10, but not FTL9, substantially accelerated flowering, indicating the flowering-promoting role of FTL10 and the divergent functions between FTL9 and FTL10 in flowering. Besides flowering, additive agronomic roles were observed for FTL10-OE regulating the number of effective panicles per plant, the number of primary branches per panicle, and spikelets per panicle without regulating seed size. Mechanistically, our Y2H and BiFC analyses demonstrate that FTL10, in contrast to FTL9, can interact with FD1 and GF14c, forming a flowering activation complex and thereby regulating flowering. Conclusion Altogether, our results elucidate the regulatory roles of FTL9 and FTL10 in flowering control, unveiling the molecular basis of functional divergence between FTL10 and FTL9, which provides mechanistic insights into shaping the dynamics of flowering time regulation in rice.

Funder

National Natural Science Foundation of China

Double Thousand Plan of Jiangxi Province

Key R&D Plan of Jiangxi Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3