Affiliation:
1. Plant Molecular and Cellular Biology Program and Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
Abstract
Abstract
During the transition from darkness to light, the rate of hypocotyl elongation is determined from the integration of light signals sensed through the phototropin, cryptochrome, and phytochrome signaling pathways. In all light conditions studied, from UV to far-red, early hypocotyl growth is rapidly and robustly suppressed within minutes of illumination in a manner dependent upon light quality and quantity. In this study, it is shown that green light (GL) irradiation leads to a rapid increase in the growth rate of etiolated Arabidopsis seedlings. GL-mediated growth promotion was detected in response to constant irradiation or a short, single pulse of light with a similar time course. The response has a threshold between 10−1 and 100 μmol m−2, is saturated before 102 μmol m−2 and obeys reciprocity. Genetic analyses indicate that the cryptochrome or phototropin photoreceptors do not participate in the response. The major phytochrome receptors influence the normal amplitude and timing of the GL response, yet the GL response is normal in seedlings grown for hours under constant dim-red light. Therefore, phytochrome activation enhances, but is not required for, the GL response. Seedlings grown under green, red, and blue light together are longer than those grown under red and blue alone. These data indicate that a novel GL-activated light sensor promotes early stem elongation that antagonizes growth inhibition.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
151 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献