Iron-Superoxide Dismutase Expression in Transgenic Alfalfa Increases Winter Survival without a Detectable Increase in Photosynthetic Oxidative Stress Tolerance

Author:

McKersie Bryan D.1,Murnaghan Julia1,Jones Kim S.1,Bowley Stephen R.1

Affiliation:

1. Plant Biotechnology Division, Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Abstract To determine whether overexpression of Fe-superoxide (SOD) dismutase would increase superoxide-scavenging capacity and thereby improve the winter survival of transgenic alfalfa (Medicago sativa L.) plants, two genotypes were transformed with the vector pEXSOD10, which contains a cDNA for Arabidopsis Fe-SOD with a chloroplast transit peptide and cauliflower mosaic virus 35S promoter. A novel Fe-SOD was detected by native PAGE in both greenhouse- and field-grown transgenic plants, but activity varied among independent transgenic plants. The increased Fe-SOD activity was associated with increased winter survival over 2 years in field trials, but not with oxidative stress tolerance as measured by resistance of leaves to methyl viologen, a superoxide generator. Total shoot dry matter production over 2 harvest years was not associated with Fe-SOD activity. There was no detectable difference in the pattern of primary freezing injury, as shown by vital staining, nor was there additional accumulation of carbohydrates in field-acclimated roots of the transgenic alfalfa plants. We did not detect any difference in growth of one transgenic plant with high Fe-SOD activity compared with a non-transgenic control. Therefore, the improvement in winter survival did not appear to be a consequence of improved oxidative stress tolerance associated with photosynthesis, nor was it a consequence of a change in primary freezing injury. We suggest that Fe-SOD overexpression reduced secondary injury symptoms and thereby enhanced recovery from stresses experienced during winter.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3