Affiliation:
1. Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), , Minzhuang Road 12, Haidian District, Beijing 100093, China
Abstract
Abstract
Stress tolerance in apple (Malus domestica) can be improved by grafting to a stress-tolerant rootstock, such as ‘SH6’ (Malus honanensis × M. domestica ‘Ralls Genet’). However, the mechanisms of stress tolerance in this rootstock are unclear. In Arabidopsis (Arabidopsis thaliana), the transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 10 is a key component of plant tolerance to multiple abiotic stresses and positively regulates antioxidant enzymes. However, how reactive oxygen species are eliminated upon activation of ZINC FINGER OF ARABIDOPSIS THALIANA 10 in response to abiotic stress remains elusive. Here, we report that MhZAT10 in the rootstock SH6 directly activates the transcription of three genes encoding the antioxidant enzymes MANGANESE SUPEROXIDE DISMUTASE 1 (MhMSD1), ASCORBATE PEROXIDASE 3A (MhAPX3a) and CATALASE 1 (MhCAT1) by binding to their promoters. Heterologous expression in Arabidopsis protoplasts showed that MhMSD1, MhAPX3a and MhCAT1 localize in multiple subcellular compartments. Overexpressing MhMSD1, MhAPX3a or MhCAT1 in SH6 fruit calli resulted in higher superoxide dismutase, ascorbate peroxidase and catalase enzyme activities in their respective overexpressing calli than in those overexpressing MhZAT10. Notably, the calli overexpressing MhZAT10 exhibited better growth and lower reactive oxygen species levels under simulated osmotic stress. Apple SH6 plants overexpressing MhZAT10 in their roots via Agrobacterium rhizogenes–mediated transformation also showed enhanced tolerance to osmotic stress, with higher leaf photosynthetic capacity, relative water content in roots and antioxidant enzyme activity, as well as less reactive oxygen species accumulation. Overall, our study demonstrates that the transcription factor MhZAT10 synergistically regulates the transcription of multiple antioxidant-related genes and elevates reactive oxygen species detoxification.
Funder
China Agriculture Research System of MOF and MARA
Science and Technology Innovation Ability Construction Projects of Beijing Academy of Agriculture and Forestry Science
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献