Functional Conservation of Clock-Related Genes in Flowering Plants: Overexpression and RNA Interference Analyses of the Circadian Rhythm in the Monocotyledon Lemna gibba

Author:

Serikawa Masayuki1,Miwa Kumiko1,Kondo Takao1,Oyama Tokitaka1

Affiliation:

1. Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464–8602, Japan; and SORST, Japan Science and Technology Corporation, Furo-cho, Chikusa-ku, Nagoya, Aichi 464–8602, Japan

Abstract

Abstract Circadian rhythms are found in organisms from cyanobacteria to plants and animals. In flowering plants, the circadian clock is involved in the regulation of various physiological phenomena, including growth, leaf movement, stomata opening, and floral transitions. Molecular mechanisms underlying the circadian clock have been identified using Arabidopsis (Arabidopsis thaliana); the functions and genetic networks of a number of clock-related genes, including CIRCADIAN CLOCK ASSOCIATED1, LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION1, GIGANTEA (GI), and EARLY FLOWERING3 (ELF3), have been analyzed. The degree to which clock systems are conserved among flowering plants, however, is still unclear. We previously isolated homologs for Arabidopsis clock-related genes from monocotyledon Lemna plants. Here, we report the physiological roles of these Lemna gibba genes (LgLHYH1, LgLHYH2, LgGIH1, and LgELF3H1) in the circadian system. We studied the effects of overexpression and RNA interference (RNAi) of these genes on the rhythmic expression of morning- and evening-specific reporters. Overexpression of each gene disrupted the rhythmicity of either or both reporters, suggesting that these four homologs can be involved in the circadian system. RNAi of each of the genes except LgLHYH2 affected the bioluminescence rhythms of both reporters. These results indicated that these homologs are involved in the circadian system of Lemna plants and that the structure of the circadian clock is likely to be conserved between monocotyledons and dicotyledons. Interestingly, RNAi of LgGIH1 almost completely abolished the circadian rhythm; because this effect appeared to be much stronger than the phenotype observed in an Arabidopsis gi loss-of-function mutant, the precise role of each clock gene may have diverged in the clock systems of Lemna and Arabidopsis.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3