The ArabidopsisGRF-INTERACTING FACTORGene Family Performs an Overlapping Function in Determining Organ Size as Well as Multiple Developmental Properties

Author:

Lee Byung Ha1,Ko Jae-Heung1,Lee Sangman1,Lee Yi1,Pak Jae-Hong1,Kim Jeong Hoe1

Affiliation:

1. Department of Biology (B.H.L., J.-H.P., J.H.K.) and School of Applied Bioscience (S.L.), Kyungpook National University, Daegu 702–701, Korea; Department of Forestry, Michigan State University, East Lansing, Michigan 48824 (J.-H.K.); and Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 361–763, Korea (Y.L.)

Abstract

AbstractPreviously, the GRF-INTERACTING FACTOR1 (GIF1)/ANGUSTIFOLIA3 (AN3) transcription coactivator gene, a member of a small gene family comprising three genes, was characterized as a positive regulator of cell proliferation in lateral organs, such as leaves and flowers, of Arabidopsis (Arabidopsis thaliana). As yet, it remains unclear how GIF1/AN3 affects the cell proliferation process. In this study, we demonstrate that the other members of the GIF gene family, GIF2 and GIF3, are also required for cell proliferation and lateral organ growth, as gif1, gif2, and gif3 mutations cause a synergistic reduction in cell numbers, leading to small lateral organs. Furthermore, GIF1, GIF2, and GIF3 overexpression complemented a cell proliferation defect of the gif1 mutant and significantly increased lateral organ growth of wild-type plants as well, indicating that members of the GIF gene family are functionally redundant. Kinematic analysis on leaf growth revealed that the gif triple mutant as well as other strong gif mutants developed leaf primordia with fewer cells, which was due to the low rate of cell proliferation, eventually resulting in earlier exit from the proliferative phase of organ growth. The low proliferative activity of primordial leaves was accompanied by decreased expression of cell cycle-regulating genes, indicating that GIF genes may act upstream of cell cycle regulators. Analysis of gif double and triple mutants clarified a previously undescribed role of the GIF gene family: gif mutants had small vegetative shoot apical meristems, which was correlated with the development of small leaf primordia. gif triple mutants also displayed defective structures of floral organs. Taken together, our results suggest that the GIF gene family plays important roles in the control of cell proliferation via cell cycle regulation and in other developmental properties that are associated with shoot apical meristem function.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3