Characterization of the Arabidopsis Mutant oligocellula6-D Reveals the Importance of Leaf Initiation in Determining the Final Leaf Size

Author:

Takeda Risa1,Sato Shoki1,Ui Takumi1,Tsukaya Hirokazu23,Horiguchi Gorou14ORCID

Affiliation:

1. Department of Life Science, College of Science, Rikkyo University , 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501 Japan

2. Graduate School of Science, The University of Tokyo , 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

3. Okazaki Institute for Integrative Bioscience , 5-1, Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan

4. Research Center for Life Science, College of Science, Rikkyo University , 3-34-1, Nishi-Ikebukuro, Toshima-ku, 171-8501 Japan

Abstract

Abstract The leaf is a determinate organ with a final size under genetic control. Numerous factors that regulate the final leaf size have been identified in Arabidopsis thaliana; although most of these factors play their roles during the growth of leaf primordia, much less is known about leaf initiation and its effects on the final leaf size. In this study, we characterized oligocellula6-D (oli6-D), a semidominant mutant of A. thaliana with smaller leaves than the wild type (WT) due to its reduced leaf cell numbers. A time-course analysis showed that oli6-D had approximately 50% fewer leaf cells even immediately after leaf initiation; this difference was maintained throughout leaf development. Next-generation sequencing showed that oli6-D had chromosomal duplications involving 2-kb and 3-Mb regions of chromosomes 2 and 4, respectively. Several duplicated genes examined had approximately 2-fold higher expression levels, and at least one gene acquired a new intron/exon structure due to a chromosome fusion event. oli6-D showed reduced auxin responses in leaf primordia, primary roots and embryos, as well as reduced apical dominance and partial auxin-resistant root growth. CRISPR-associated protein-9-mediated genome editing enabled the removal of a 3-Mb duplicated segment, the largest targeted deletion in plants thus far. As a result, oli6-D restored the WT leaf phenotypes, demonstrating that oli6-D is a gain-of-function mutant. Our results suggest a new regulatory point of leaf size determination that functions at a very early stage of leaf development and is negatively regulated by one or more genes located in the duplicated chromosomal segments.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3