Affiliation:
1. Rolls-Royce plc, Derby, UK
Abstract
This paper reports the progress made in a parametric design and rapid meshing system (PADRAM) developed under two recent UK national sponsored research programs. PADRAM is designed to parametrically change the blade geometry and rapidly generate body-conformal high-quality viscous meshes. This allows speeding up the CFD loop by making the meshing process fully automatic on the basis of pre-designed templates. The geometry parameterisation is done within the mesh generator, making its integration within the optimisation loop straightforward.
The paper presents examples that demonstrate how incorporating real geometry features into PADRAM is fundamental to achieve numerical models closer to reality. This is key factor in trusting the CFD solution and making use of it to further improve current designs. It also shows that feature-based structured mesh is good for cases that need to be repeatable across sites and teams, where consistency of the mesh is crucial and quick answers required to cope with tight project deadlines.
The incorporation of additional complex geometrical features limits the applicability of the template structured approach and can be sometimes at the expense of mesh quality. In this regard, novel unstructured meshing technologies have been developed and implemented into PADRAM in order to deal with non standard and complex configurations. Two of these methods are presented in this paper (i.e., Zipper Layer and Delaunay Cavity). The paper shows how these can be used to paste together various multi-block structured meshes, hence providing the most suitable meshing topology to be used for each component separately. This makes the PADRAM code a unique meshing tool, able to combine the advantages of the template-topology approach to the flexibility of fully unstructured meshes. A number of supportive examples is reported in the paper.
Publisher
American Society of Mechanical Engineers
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献