Impact of Rotor-Casing Effusion Cooling on Turbine Performance and Operating Point: An Experimental, Computational, and Theoretical Study

Author:

Adams Maxwell G.1,Adami Paolo2,Collins Matthew1,Beard Paul F.1,Chana Kam S.1,Povey Thomas1

Affiliation:

1. Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK

2. Rolls-Royce Deutschland, Eschenweg 11, 15827 Blankenfelde-Mahlow, Germany

Abstract

Abstract It is known that a secondary effect of rotor-casing effusion cooling is to modify and potentially spoil the rotor over-tip leakage flow. Studies have shown both positive and negative impacts on high-pressure (HP) stage aerodynamic performance and heat transfer, although there remains no consensus on whether the net effect is beneficial when both aerodynamic and thermal effects are accounted for simultaneously. An effect that has not been extensively discussed in the literature is the change in stage operating point that arises due to mass introduction midway through the machine. This effect complicates the analysis of the true performance impact on a turbine and must be accounted for in an assessment of the overall benefit of such a system. In this paper, we develop a low-order (“mean-line”) analysis in an attempt to bring clarity to this issue. We then present results from experiments conducted in the Oxford Turbine Research Facility, a 1.5-stage transonic rotating facility capable of matching non-dimensional engine conditions. In the experiments, effusion cooling was implemented over a sector of the rotor casing spanning 24 degrees or four rotor-blade pitches. Rotor-exit radial traverse and HP vane loading measurements were conducted locally to the cooled sector. Results are compared to baseline tests conducted without cooling. To assess the degree to which experimental results with only a sector of the annulus cooled would provide an accurate indication of stage operating point changes (when measured local to the annulus) in an annular (engine-like) environment, unsteady Reynolds-averaged Navier–Stokes (URANS) simulations were performed. In particular, simulations of a full annulus with an effusion-cooled sector were compared to a periodic simulation with fully annular effusion cooling. The results—perhaps surprisingly—suggest that a cooled sector is sufficient to infer the changes in an annular system, provided measurements are performed locally to the sector. Experiments conducted with fixed 1.5-stage boundary conditions showed increases in both mid-stage static pressure and stage-exit total pressure with cooling. The mean-line model and URANS predictions were in good agreement with the experimental data and also showed an increase in stage reaction and a reduction in turbine-inlet (mainstream) mass flowrate with cooling. Finally, the URANS predictions were used to show that with cooling, there are changes both locally to the cooled casing (changes to the tip-leakage and secondary flow structures) and globally (changes to the bulk-flow velocity triangles). An absolute stage efficiency benefit of 0.7% was predicted for a coolant-to-mainstream mass flowrate ratio of 2.2%. By running with a number of different boundary conditions, steady RANS simulations were used to estimate the relative contributions to the efficiency improvement due to the changes in operating point and aerodynamics in the blade-tip region. For the present configuration, both changes contribute positively to the improvement in stage efficiency.

Publisher

ASME International

Subject

Mechanical Engineering

Reference24 articles.

1. Novel Turbine Rotor Shroud Film-Cooling Design and Validation: Part 1;Chana,2009

2. Novel Turbine Rotor Shroud Film-Cooling Design and Validation: Part 2;Chana,2009

3. Application of Film Cooling to an Unshrouded High-Pressure Turbine Casing;Collins;ASME J. Turbomach.,2017

4. Exploitation of Acoustic Effects in Film Cooling;Collins;ASME J. Eng. Gas Turbines Power,2015

5. Control of Rotor Tip Leakage Through Cooling Injection From Casing in a High-Work Turbine: Computational Investigation Using a Feature-Based jet Model;Mischo,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blade tip leakage flow and heat transfer characteristics over a gas turbine blade at subsonic and transonic exit conditions;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2023-10-23

2. A robust one-dimensional approach for the performance evaluation of turbines driven by pulsed detonation combustion;Energy Conversion and Management;2021-11

3. Effect of casing purge flow on heat transfer and cooling performance of blade squealer tip for a gas turbine stage;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2021-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3