Design of Aerodynamically Balanced Transonic Compressor Rotors

Author:

Lefas Demetrios1,Miller Robert J.1

Affiliation:

1. University of Cambridge Whittle Laboratory, , Cambridge CB3 0DY , UK

Abstract

Abstract This paper describes a simple and efficient physics-based method for designing optimal transonic multistage compressor rotors. The key to this novel method is that the spanwise variation of the parameter which controls the three-dimensional shock structure, the area ratio between the throat and the inlet, “Athroat /Ainlet”, is extracted directly from the 3D computational fluid dynamics (CFD). The spanwise distribution of the area ratio is then adjusted iteratively to balance the shock structure across the blade span. Because of this, the blade design will be called “aerodynamically balanced.” The new design method converges in a few iterations and is physically intuitive because it accounts for the real changes in the 3D area ratio that directly controls the shock structure. Specifically, changes in both the spanwise 3D flow and the rotor’s operating condition; thus aiding designer understanding. To demonstrate this, two example design cases are shown in the paper: a transonic rotor within a multistage civil compressor with variable upstream stator vanes, and an embedded rotor within a multistage military fan. The method is shown to (1) improve both the operating range and the design efficiency while retaining the compressor’s overall matching, and (2) allow a balanced design to be simultaneously achieved at multiple shaft speeds. The result is a method which simplifies the multistage transonic compressor rotor design process and therefore has great practical utility.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3