Transonic Relief in Fans and Compressors

Author:

Lefas Demetrios1,Miller Robert J.2

Affiliation:

1. Whittle Laboratory, University of Cambridge, Cambridgeshire CB3 0DY, UK

2. Whittle Laboratory, University of Cambridge, Cambridge CB3 0DY, UK

Abstract

Abstract Every supersonic fan or compressor blade row has a streamtube, the “sonic streamtube,” which operates with a blade relative inlet Mach number of one. A key parameter in the design of the “sonic streamtube” is the area ratio between the blade throat area and the upstream passage area, Athroat/Ainlet. In this article, it is shown that one unique value exists for this area ratio. If the area ratio differs, even slightly, from this unique value, then the blade either chokes or has its suction surface boundary layer separated due to a strong shock. Therefore, it is surprising that in practice designers have relatively little problem designing blade sections with an inlet relative Mach number close to unity. This article shows that this occurs due to a physical mechanism known as “transonic relief.” If a designer makes a mistake and designs a blade with a “sonic streamtube,” which has the wrong area ratio, then “transonic relief” will self-adjust the spanwise streamtube height automatically moving it toward the unique optimal area ratio, correcting for the designer’s error. Furthermore, as the blade incidence changes, the spanwise streamtube height self-adjusts, moving the area ratio toward its unique optimal value, effectively controlling the blade’s incidence range. Without “transonic relief,” supersonic and transonic fan and compressor design would be impossible. This article develops a simple model that allows “transonic relief” to be decoupled from other mechanisms and to be systematically studied. The physical mechanism on which it is based is thus determined and a universal relationship for core compressor preliminary blade design is presented. Finally, its implications in relaxing manufacturing tolerances and in the design of future distortion tolerant blades are discussed.

Publisher

ASME International

Subject

Mechanical Engineering

Reference12 articles.

1. Design of an Advanced Civil Fan Rotor;Ginder;ASME J. Turbomach.,1987

2. An Improved Compressor Performance Prediction Model;Wright,1981

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3