Handling Perception Uncertainty in Simulation-Based Singulation Planning for Robotic Bin Picking

Author:

Kumbla Nithyananda B.1,Thakar Shantanu2,Kaipa Krishnanand N.3,Marvel Jeremy4,Gupta Satyandra K.2

Affiliation:

1. Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 e-mail:

2. Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, CA 90089 e-mail:

3. Department of Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 e-mail:

4. Intelligent Systems Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 e-mail:

Abstract

Robotic bin picking requires using a perception system to estimate the posture of parts in the bin. The selected singulation plan should be robust with respect to perception uncertainties. If the estimated posture is significantly different from the actual posture, then the singulation plan may fail during execution. In such cases, the singulation process will need to be repeated. We are interested in selecting singulation plans that minimize the expected task completion time. In order to estimate the expected task completion time for a proposed singulation plan, we need to estimate the probability of success and the plan execution time. Robotic bin picking needs to be done in real-time. Therefore, candidate singulation plans need to be generated and evaluated in real-time. This paper presents an approach for utilizing computationally efficient simulations for generating singulation plans. Results from physical experiments match well with the predictions obtained from simulations.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3