Fuel Stratification Influence on NOx Emission in a Premixed Axial Reacting Jet-in-Crossflow at High Pressure

Author:

Stiehl Bernhard1,Genova Tommy1,Otero Michelle1,Martin Scott2,Ahmed Kareem1

Affiliation:

1. Propulsion and Energy Research Laboratory, Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816

2. Embry–Riddle Aeronautical University, 600 S Clyde Morris Boulevard, Daytona Beach, FL 32114

Abstract

Abstract Three reacting jet-in-crossflow (JiC) methane/air flames were numerically investigated in a lean axially staged combustor at a pressure of five atmospheres. A detailed chemistry Star-CCM+ computational fluid dynamics (CFD) model was used with 53 species considered and the result of turbulence-governed finite-rate modeling was validated with in-house experimental data. An optically accessible test section features three side windows, allowing local flow and flame analysis with particle image velocimetry (PIV) and CH* chemiluminescence as well as pressure, temperature, and species exit measurements. The research objective was to predict and verify NOx formation of the premixed 12.7 mm axial jet. Three headend temperature levels were investigated along with three premixed jets at lean (φJet = 0.75), near-stoichiometric (φJet = 1.07), and rich (φJet = 1.78) axial fuel line equivalence ratio. Based on the matching exit emission concentration, global emission benefits were investigated by adjustment of the fuel stratification. The perfectly premixed methane/air flames of this study were shown to ignite at the lee-side of the jet. For the elevated headend temperature level T = 1800 K, the flame extended beyond the windward jet trajectory and caused high axial NO production. For industry application, a firing temperature of 1920 K was achieved with a NOx optimized fuel split of 25%, combining a lean headend (φHeadend = 0.61) with a rich (φJet = 1.78) jet equivalence ratio. This operating point allowed minimization of the combustor residence time at temperatures above 1700 K as well as combustion in a compact flame at the jet lee-side along the counter rotating vortex pair.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3