Effects of Injection Sequences on Spray Characteristics of an Air-Assisted Atomizer for Two-Stroke Aviation Engines

Author:

He Yituan1,Zheng Denglin1,Liu Chunzhi1,Liao Shiyong2

Affiliation:

1. Chongqing Jiaotong University College of Traffic & Transportation, , Chongqing 400074 , China

2. Xi'an Traffic Engineering Institute College of Traffic & Transportation, , Xi'an 710300 , China

Abstract

AbstractThe air-assisted atomizer used in a two-stroke aviation engine has two separate operation sequences, namely the fuel injection and air injection, in contrast to the synchronous fuel/air injection of conventional effervescent atomizers for continuous combustion engines. This work presents a numerical flow modeling to explore the effects of these two injection sequences on the effervescent spray formation, using the combined methodology of Eulerian–Eulerian multiphase technique and Shear-Stress Transport k–ω turbulence model. The transient fuel delivery in the internal fuel passage of the atomizer and the effects of the injection sequences on the developments of the droplet sprays were studied. Three characteristic times T1, T2, and T3 were introduced to specify the fuel injection duration, air injection duration, and the time interval between these two injection sequences, respectively. The results showed that the most important role of T1 is to meter fuel mass loading, and T2 plays the dominant role in anchor-shaped spray structure. For the air-injection sequence, there is a critical time, T3c, which is defined as the minimum opening time of the air injector, for the complete ejection of the fuel in the atomizer, which shows a linear correlation to T2, but is weakly related to T1.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3