Biodiesel Spray Characteristics and Their Effect on Engine Combustion and Particulate Emissions

Author:

Singh Akhilendra Pratap1,Agarwal Avinash Kumar1

Affiliation:

1. Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India

Abstract

Abstract Spray analysis is used to characterize the fuel spray evolution and spray shape, which affects in-cylinder combustion and particulate emission characteristics of compression ignition (CI) engines. In this study, spray evolution of biodiesel blends and mineral diesel was captured using a high-speed charge coupled device (CCD) camera at different fuel injection pressures (FIPs) and ambient pressures (APs) in a constant volume spray chamber (CVSC). Results showed that spray parameters were significantly affected by FIP and AP. Higher FIPs resulted in longer fuel spray penetration length (Ls) and reduced spray cone angle (As). However, AP variation showed an exactly opposite trend of Ls and As. Increasing AP resulted in shorter Ls and increased As. Fuel properties also affected the spray characteristics, which slightly improved for lower biodiesel blends (B20: 20% v/v blend of biodiesel with mineral diesel) and then degraded for higher biodiesel blends (B40: 40% v/v blend of biodiesel with mineral diesel) with respect to baseline mineral diesel. The effects of these findings of fuel spray analysis were validated using engine experiments, which were performed in a single-cylinder research engine using identical test fuels and fuel injection parameters. Relatively superior combustion of B20-fueled engine and lower particulate emissions at higher FIPs showed good agreement with spray results.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3