Diesoline, Diesohol, and Diesosene Fuelled HCCI Engine Development

Author:

Pratap Singh Akhilendra1,Agarwal Avinash Kumar1

Affiliation:

1. Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India e-mail:

Abstract

Compression ignition (CI) engines are facing strong restrictive emission norms globally, which demand extremely low oxides of nitrogen (NOx) and particulate matter (PM) emissions. Homogeneous charge compression ignition (HCCI) engine is a very attractive solution to meet these stringent emission challenges due to its capability to simultaneously reduce NOx and PM. In this study, HCCI combustion was investigated using different test fuels such as diesoline (15% v/v gasoline with diesel), diesohol (15% v/v ethanol with diesel), and diesosene (15% v/v kerosene with diesel) vis-a-vis baseline mineral diesel. A dedicated fuel vaporizer was used for homogeneous fuel–air mixture preparation. The experiments were performed at constant intake charge temperature (180 °C), fixed exhaust gas recirculation (EGR) (15%) at different engine loads. Stable combustion characteristics were determined for diesosene at lower engine loads, however, diesoline and diesohol yielded improved emissions compared to baseline diesel HCCI combustion. At higher loads, diesoline and diesosene showed higher knocking tendency compared to baseline diesel and diesohol. Diesohol showed lower NOx and smoke opacity, however, diesoline and diesosene showed slightly lower hydrocarbon (HC) and carbon monoxide (CO) emissions compared to baseline diesel HCCI combustion. Performance results of diesohol and diesosene were slightly inferior compared to diesel and diesoline HCCI combustion. Physical characterization of exhaust particulates was done for these test fuels using engine exhaust particle sizer (EEPS). Particle number-size distribution showed that most particles emitted from diesoline and diesohol were in ultrafine size range and baseline diesel and diesosene emitted relatively larger particles. Reduction in total particle number concentration with addition of volatile fuel components in mineral diesel was another important observation of this study.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3