CHARACTERIZATION OF FULLY DEVELOPED AIR-ASSISTED SPRAY UNSTEADINESS USING RP-3 JET FUEL

Author:

Wu Hao,Zhang Zhenyu,Zhang Fujun,Wu Kun,Roberts William L.

Abstract

The ideal spray theory of Edwards and Marx was utilized to investigate the dependence of fully developed intermittent air-assisted spray unsteadiness on operational conditions and fluid properties. Time series information of spray droplets was identified by phase Doppler particle analyzer and used for inter-particle arrival time statistics. Results demonstrated that spray unsteadiness along the spray axis and in proximity to the nozzle exit area is more pronounced than far-nozzle field and spray periphery. The unsteadiness on the spray axis exhibits a decreasing function with the fuel injection durations, whereas an increase of air injection duration significantly elongates the unstable region along the spray axis. The properties of test liquid fuels show a moderate effect on the unsteadiness of the air-assisted spray, potentially due to their inconspicuous influences on spray atomization characteristics. Chi-square method is generally the preferred method for quantifying the global spray unsteadiness when compared to the deviation of the first time gap of experimental and theoretical inter-particle time distribution. Unsteadiness results observed during high-velocity droplet spray stage are relatively distinct compared to droplet deceleration and suspension stages. This distinction can be attributed to the continuous energy input during the initial nozzle opening, emphasizing the significance of droplet velocity in determining spray unsteadiness.

Publisher

Begell House

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3