Flow-Independent Liquid Jet-in-Crossflow Injection Using Physical Obstructions

Author:

Clark Charles R.1,Tonarely Michael E.1,Morales Anthony J.1,Reyes Jonathan1,Ahmed Kareem1

Affiliation:

1. University of Central Florida Department of Mechanical and Aerospace Engineering, , 4000 Central Florida Boulevard, Orlando, FL 32816

Abstract

Abstract The present work explores a novel flow-independent liquid injection scheme, incorporating solid obstructions to alter the key mechanisms controlling the liquid breakup and trajectory. These obstructions, designated pintiles, minimize the variability of fuel injection dynamics over a range of operational conditions. To better understand these mechanisms, a variety of solid pintile obstructions are designed and incorporated into a liquid jet in crossflow experiment. The design parameters of interest include the fraction of the liquid jet orifice blocked by the pintile (orifice coverage), the vertical height of the pintile in the liquid stream, and the angle of the obstruction with respect to the injection plate. All pintiles are tested at non-reacting ambient temperature and pressure conditions over a range of engine relevant Reynolds numbers (Re = 171,500–343,000), momentum flux ratios (Q = 4–45), and Weber numbers (We = 20–80) to understand the leading order effects the solid–liquid–gas interaction has on the liquid breakup and trajectory control. The results demonstrate that the most consistent jet trajectories are achieved with pintiles with a high orifice coverage, a large height, and an angle of 45 deg. Other parameters, such as the transverse spread of the liquid jet and droplet size distributions, are quantified to ensure that consistent jet trajectories can be achieved without imparting adverse effects on other relevant combustion characteristics. The results provide a foundational, first-order understanding on how to minimize variability of liquid injection across engine relevant Reynolds numbers, Weber numbers, and momentum flux ratios.

Funder

Office of Naval Research

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3