Deep Learning of Forced Convection Heat Transfer

Author:

Kang Munku1,Kwon Beomjin1

Affiliation:

1. School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287

Abstract

Abstract We present the deep learning model for internal forced convection heat transfer problems. Conditional generative adversarial networks (cGAN) are trained to predict the solution based on a graphical input describing fluid channel geometries and initial flow conditions. Without interactively solving the physical governing equations, a trained cGAN model rapidly approximates the flow temperature, Nusselt number (Nu), and friction factor (f) of a flow in a heated channel over Reynolds number ranging from 100 to 27,750. For an effective training, we optimize the dataset size, training epoch, and a hyperparameter λ. The cGAN model exhibited an accuracy up to 97.6% when predicting the local distributions of Nu and f. We also show that the trained cGAN model can predict for unseen fluid channel geometries such as narrowed, widened, and rotated channels if the training dataset is properly augmented. A simple data augmentation technique improved the model accuracy up to 70%. This work demonstrates the potential of deep learning approach to enable cost-effective predictions for thermofluidic processes.

Funder

National Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference24 articles.

1. Deep Learning;Nature,2015

2. Deep Learning: Methods and Applications;Found. Trends Signal Process.,2014

3. ImageNet Classification With Deep Convolutional Neural Networks;Commun. ACM,2017

4. Strategies for Training Large Scale Neural Network Language Models,2011

5. Machine Learning for Fluid Mechanics;Annu. Rev. Fluid Mech.,2020

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3