Development of ANN prediction model for estimation of heat transfer utilizing rectangular-toothed v-cut twisted tape

Author:

Singh Sanjay Kumar1,Kacker Ruchin1ORCID,Gautam Satyam Shivam2,Tamang Santosh Kumar2

Affiliation:

1. Department of Mechanical Engineering, Sagar Institute of Science and Technology, Bhopal, Madhya Pradesh, India

2. Department of Mechanical Engineering, NERIST, Itanagar, Arunachal Pradesh, India

Abstract

This work explores the heat transfer performance and friction characteristics of toothed v-cut twisted tapes, while employing an artificial neural network (ANN) as a predictive model. The novelty of this study lies in the innovative use of toothed v-cut twisted tapes to enhance heat transfer performance, coupled with the application of ANN for precise prediction and optimization. Focusing on a specific geometric range by adjusting the depth ratio of rectangular teeth and the width-to-depth ratio of the v-cut, the study investigates turbulent flows with Reynolds numbers spanning from 6000 to 13,000, mirroring real-world applications. The investigations unveil that the introduction of teeth to the v-cut generates a secondary vortex flow, contributing significantly to improved heat transfer by enhancing the Nusselt number ( Nu) and mitigating the reduction in heat transfer rate with increasing depth of cut at higher Reynolds numbers ( Re). The nuanced behavior of the friction factor is revealed, showcasing its inverse proportionality to Re and e/ c, and direct proportionality to b/ c, offering valuable practical insights. Remarkably, the analysis of heat transfer rate variations underscores the ANN model's predictive accuracy. Key findings include the most substantial increase in heat transfer rate for b/ c = 0.67 and e/ c = 0.14, with the ANN model predictions closely aligning with these results. The ANN model, trained on extensive datasets derived from experiments, emerges as a robust predictive tool, demonstrating mean relative errors constrained to less than 3.3% for Nusselt numbers and 0.08% for friction factors. Validation against previously unseen datasets further substantiates its efficacy, with an average percentage error of 3.32% for friction and 0.96% for Nusselt numbers. These results, along with the 97% and 99% accuracy for friction and Nusselt numbers, respectively, position the ANN model as a reliable tool for precision in predicting and optimizing heat transfer dynamics across varied engineering scenarios.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3