Inferring temperature fields from concentration fields in channel flows using conditional generative adversarial networks

Author:

Cao Hongfan12ORCID,Kwon Beomjin3ORCID,Kang Peter K.12ORCID

Affiliation:

1. Department of Earth and Environmental Sciences, University of Minnesota 1 , Twin Cities, Minnesota 55455, USA

2. Saint Anthony Falls Laboratory, University of Minnesota 2 , Minneapolis, Minnesota 55414, USA

3. School for Engineering of Matter, Transport and Energy, Arizona State University 3 , Tempe, Arizona 85287, USA

Abstract

An accurate estimation of three-dimensional (3D) temperature fields in channel flows is challenging but critical for many important applications such as heat exchangers, radiation energy collectors, and enhanced geothermal systems. In this paper, we demonstrate the possibility of inferring temperature fields from concentration fields for laminar convection flows in a 3D channel using a machine learning (ML) approach. The study involves generation of data using 3D numerical simulations, application of deep learning methodology using conditional generative adversarial networks (cGANs), and analysis of how dataset selection affects model performance. The model is also tested for applicability in different convection scenarios. Results show that cGANs can successfully infer temperature fields from concentration fields, and the reconstruction accuracy is sensitive to the training dataset selected. In this study, we demonstrate how ML can be used to overcome the limitations of traditional heat and mass analogy functions widely used in heat transfer research.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3