A Simplified Numerical Approach to Characterize the Thermal Response of a Moving Bed Solar Reactor

Author:

Al Sahlani Assaad1,Randhir Kelvin2,Ozalp Nesrin3,Klausner James2

Affiliation:

1. Department of Mechanical and, Civil Engineering, Purdue University Northwest, Hammond, IN 46323

2. Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48823

3. Department of Mechanical and Civil Engineering, Purdue University Northwest, Hammond, IN 46323

Abstract

Abstract Concentrated solar thermochemical storage in the form of a zero-emission fuel is a promising option to produce long-duration energy storage. Solar fuel is produced using a cavity reactor that captures concentrated solar radiation from a solar field of heliostats. In this paper, heat transfer model of a tubular plug-flow reactor designed and manufactured for a solar fuel production is presented. Experimental data collected from a fixed bed tubular reactor testing are used for model comparison. The system consists of an externally heated tube with counter-current flowing gas and moving solid particles as the heated media. The proposed model simulates the dynamic behavior of temperature profiles of the tube wall, gas, and particles under various gas flowrates and residence times. The heat transfer between gas–wall, solid particle–wall, and gas–solid particle is numerically studied. The model results are compared with the results of experiments done using a 4 kW furnace with a 150 mm heating zone surrounding a horizontal alumina tube (reactor) with 50.8 mm outer diameter and thickness of 3.175 mm. Solid fixed particles of magnesium manganese oxide (MgMn2O4) with the size of 1 mm are packed within the length of 250 mm at the center of the tube length. Simulation results are assessed with respect to fixed bed experimental data for four different gas flowrates, namely, 5, 10, 15, and 20 standard liters per minute of air, and furnace temperatures in the range of 200–1200 °C. The simulation results showed good agreement with maximum steady state error that is less than 6% of those obtained from the experiments for all runs. The proposed model can be implemented as a low-order physical model for the control of temperature inside plug-flow reactors for thermochemical energy storage applications.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3