Experimental Performance of a Nonlinear Control Strategy to Regulate Temperature of a High-Temperature Solar Reactor

Author:

Alsahlani Assaad1,Ozalp Nesrin2

Affiliation:

1. Al-Furat Al-Awsat Technical University Engineering Technical College, , Al-Najaf 54001 , Iraq

2. Purdue University Northwest Mechanical and Civil Engineering Department, , Hammond, IN 46323

Abstract

Abstract Despite the significant potential of solar thermochemical process technology for storing solar energy as solid-state solar fuel, several challenges have made its industrial application difficult. It is important to note that solar energy has a transient nature that causes instability and reduces process efficiency. Therefore, it is crucial to implement a robust control system to regulate the process temperature and tackle the shortage of incoming solar energy during cloudy weather. In our previous works, different model-based control strategies were developed namely a proportional integral derivative controller (PID) with gain scheduling and adaptive model predictive control (MPC). These methods were tested numerically to regulate the temperature inside a high-temperature tubular solar reactor. In this work, the proposed control strategies were experimentally tested under various operation conditions. The controllers were challenged to track different setpoints (500 °C, 1000 °C, and 1450 °C) with different amounts of gas/particle flowrates. Additionally, the flow controller was tested to regulate the reactor temperature under a cloudy weather scenario. The ultimate goal was to produce 5 kg of reduced solar fuel magnesium manganese oxide (MgMn2O4) successfully, and the controllers were able to track the required process temperature and reject disturbances despite the system's strong nonlinearity. The experimental results showed a maximum error in the temperature setpoint of less than 0.5% (6 °C), and the MPC controller demonstrated superior performance in reducing the control effort and rejecting disturbances.

Funder

Solar Energy Technologies Program

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3