Affiliation:
1. Purdue University Northwest Department of Mechanical and Civil Engineering, , Hammond, IN 46323
2. Michigan State University Department of Mechanical Engineering, , East Lansing, MI 48823
Abstract
Abstract
Solar-driven thermochemical energy storage systems are proven to be promising energy carriers (solar fuels) to utilize solar energy by using reactive solid-state pellets. However, the production of solar fuel requires a quasi-steady-state process temperature, which represents the main challenge due to the transient nature of solar power. In this work, an adaptive model predictive controller (MPC) is presented to regulate the temperature inside a tubular solar reactor to produce solid-state solar fuel for long-term thermal storage systems. The solar reactor system consists of a vertical tube heated circumferentially over a segment of its length by concentrated solar power, and the reactive pellets (MgMn2O4) are fed from the top end and flow downwards through the heated tube. A countercurrent flowing gas supplied from the lower end interacts with flowing pellets to reduce it thermochemically at a temperature range of 1000—1500 °C. A low-order physical model was developed to simulate the dynamics of the solar reactor including the reaction kinetics, and the proposed model was validated numerically by using a 7-kW electric furnace. The numerical model then was utilized to design the MPC controller, where the control system consists of an MPC code linked to an adaptive system identification code that updates system parameters online to ensure system robustness against external disturbances (sudden change in the flow inside the reactor), model mismatches, and uncertainty. The MPC controller parameters are tuned to enhance the system performance with minimum steady-state error and overshoot. The controller is tested to track different temperature ranges between 500 °C and 1400 °C with different particles/gas mass flowrates and ramping temperature profiles. Results show that the MPC controller successfully regulated the reactor temperature within ± 1 °C of its setpoint and maintained robust performance with minimum input effort when subjected to sudden changes in the amount of flowing media and the presence of chemical reaction.
Funder
Solar Energy Technologies Program
Subject
Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献