Wrench Uncertainty Quantification and Reconfiguration Analysis in Loosely Interconnected Cooperative Systems

Author:

Sovizi Javad1,Rai Rahul1,Krovi Venkat1

Affiliation:

1. Department of Mechanical Engineering, University at Buffalo, Buffalo, NY 14260 e-mail:

Abstract

Loosely interconnected cooperative systems such as cable robots are particularly susceptible to uncertainty. Such uncertainty is exacerbated by addition of the base mobility to realize reconfigurability within the system. However, it also sets the ground for predictive base reconfiguration in order to reduce the uncertainty level in system response. To this end, in this paper, we systematically quantify the output wrench uncertainty based on which a base reconfiguration scheme is proposed to reduce the uncertainty level for a given task (uncertainty manipulation). Variations in the tension and orientation of the cables are considered as the primary sources of the uncertainty responsible for nondeterministic wrench output on the platform. For nonoptimal designs/configurations, this may require complex control structures or lead to system instability. The force vector corresponding to each agent (e.g., pulley and cable) is modeled as random vector whose magnitude and orientation are modeled as random variables with Gaussian and von Mises distributions, respectively. In a probabilistic framework, we develop the closed-form expressions of the means and variances of the output force and moment given the current state (tension and orientation of the cables) of the system. This is intended to enable the designer to efficiently characterize an optimal configuration (location) of the bases in order to reduce the overall wrench fluctuations for a specific task. Numerical simulations as well as real experiments with multiple iRobots are performed to demonstrate the effectiveness of the proposed approach.

Funder

National Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Load Estimation and Optimal Energy Efficiency Configuration Determination of an Aerial Cable Towed Robot: A Preliminary Study;2022 International Conference on Machine Learning, Control, and Robotics (MLCR);2022-10

2. Balloon Locomotion for Extreme Terrain;Journal of Mechanisms and Robotics;2021-01-18

3. Wrench-Feasible Workspace of Mobile Cable-Driven Parallel Robots;Journal of Mechanisms and Robotics;2020-01-14

4. Influence of parameters uncertainties on the positioning of cable-driven parallel robots;2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2019-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3