Ultraviolet-Activated Frequency Control of Beams and Plates Based on Isogeometric Analysis

Author:

Guo Yujie1,Tzou Hornsen2

Affiliation:

1. Interdisciplinary Research Institute of Aeronautics and Astronautics, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China e-mail:

2. Fellow ASME Interdisciplinary Research Institute of Aeronautics and Astronautics, College of Aerospace Engineering, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China e-mail:

Abstract

A new light-activated shape memory polymer (LaSMP) smart material exhibits shape memory behaviors and stiffness variation via ultraviolet (UV) light exposures. This dynamic stiffness provides a new noncontact actuation mechanism for engineering structures. Isogeometric analysis (IGA) utilizes high order and high continuity nonuniform rational B-spline (NURBS) as basis functions which naturally fulfills C1-continuity requirement of Euler–Bernoulli beam and Kirchhoff plate theories. Compared with the traditional finite elements of beams and plates, IGA does not need extra rotational degrees-of-freedom while providing accurate results. The UV light-activated frequency control of LaSMP fully and partially laminated beam and plate structures based on the IGA is presented in this study. For the analysis of LaSMP partially laminated plates, the finite cell approach in the framework of IGA is proposed to handle NURBS geometries containing trimming features. The accuracy and efficiency of the proposed isogeometric approach are demonstrated via several numerical examples in frequency control. The results show that, with LaSMPs, broadband frequency control of beam and plate structures can be realized. Furthermore, changing LaSMP patch sizes on beams and plates further broadens its frequency control ranges. Studies suggest that: (1) the newly developed IGA combining finite cell approach is an effective numerical tool and (2) the maximum frequency manipulation ratios of beam and plate structures, respectively, reach 24.30% and 16.75%, which demonstrates the feasibility of LaSMPs-induced vibration control of structures.

Funder

National Natural Science Foundation of China

Nanjing University of Aeronautics and Astronautics

Natural Science Foundation of Jiangsu Province

Publisher

ASME International

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3