Light Activated Shape Memory Polymers: Some Inhomogeneous Deformation Examples

Author:

Sodhi Jaskirat S.1,Rao I. Joga1

Affiliation:

1. New Jersey Institute of Technology, Newark, NJ

Abstract

Shape memory polymers (SMP’s) belong to a large family of shape memory materials, which are defined by their capacity to store a deformed (temporary) shape and recover an original (parent) shape. SMP’s have the ability to change size and shape when activated through a suitable trigger. This trigger, which can be heating the polymer or exposing it to light of a specific frequency, is responsible for the new temporary shape. Return to the original shape can be achieved by a suitable reverse trigger. Light Activated Shape Memory Polymers (LASMP) are recently developed smart materials which are synthesized with special photosensitive molecules. These molecules when exposed to Ultraviolet (UV) light at specific wavelengths, form covalent crosslinks that are responsible for providing LASMP with their temporary shape. Light activation removes temperature constraints faced by thermoresponsive SMP for medical applications and also brings the added advantage of remote activation. Thus LASMP find use in a variety of applications ranging from MEMS devices to widespread usage for biomedical devices such as intravenous needles and stents. Furthermore, the aerospace industry has found use for these materials for applications ranging from easily deployable space structures to morphing wing aircraft. The authors have introduced a constitutive model to model the mechanics of these LASMP [1]. The modeling is done using a framework based on the theory of multiple natural configurations. A few homogenous and inhomogeneous examples were solved in [1], but with tacit understanding that the intensity of light and hence the extent of reaction is homogenous throughout the polymer sample. In this paper we use the developed model to solve the cases of inhomogeneous deformation with inhomogeneous exposure to light.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3