Frequency Control of Beams and Cylindrical Shells With Light-Activated Shape Memory Polymers

Author:

Li Huiyu1,Li Hua2,Tzou Hornsen12

Affiliation:

1. The State Key Laboratory of Fluid Power Transmission and Control, Department of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China

2. StrucTronics and Control Lab, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China

Abstract

Light activated shape memory polymer (LaSMP) is a novel smart material. It realizes the shape memory function under the exposure of laser lights with two different wavelengths. During the exposure process, the stiffness of LaSMPs also changes. With this noncontact actuation feature, this study presents a new technique to manipulate frequencies of beams and cylindrical shells. Fundamental LaSMP mechanism and its stiffness manipulation are presented first. The LaSMP/elastic coupled dynamic equations of cylindrical shells coupled with LaSMPs are established first and then simplified to the governing equation of beams. In case studies, the natural frequency of a cantilever beam laminated with LaSMP patches is studied. Furthermore, the length of LaSMP patches is varied to broaden its frequency variation range. Results show that the maximum frequency change ratio reaches to about 24.5% on beams. A simply supported cylindrical shell laminated with LaSMPs on both the inner and outer surfaces is also analyzed and its frequency varies about 6% for the lowest (1,4) mode. Thus, adopting LaSMPs to manipulate the structural frequencies is a new noncontact actuation technique in vibration controls.

Publisher

ASME International

Subject

General Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3